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Course topics

1 Static games
2 Zero-sum games
3 Potential games
4 Extensive form games
5 Randomized strategies in extensive form games
6 Dynamic games, dynamic programming for games
7 Dynamic games, linear quadratic games
8 Convex games, Nash equilibria characterization
9 Convex games, Nash equilibria computation
10 Auctions
11 Bayesian games
12 Learning in games
13 Final project presentations
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Admin matter

Timeline: project update: April 16, 13:15-14:00, 10%
Template for presentation was posted on last week’s Moodle
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Review - loop model

Dynamic game (first zero-sum setting for simplicity)
There exists a state that evolves at each stage

xk+1 = f(xk , uk , vk).

The outcome of the game can be expressed as
KX

k=1
gk(xk , uk , vk).

player 1 minimizer, player 2 maximizer

Last time, we motivated and defined subgame perfect equilibrium.
Today’s goals:

more intuition into subgame perfect equilibrium
computation for specific class of dynamic games: linear quadratic games
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Backward induction to compute subgame perfect equilibria

Subgame-perfect Nash Equilibrium
A strategy is a subgame perfect equilibrium if it represents a NE of every
subgame of the original game.

stage K

stages 1, . . . ,K � 2

saddle point strategy

for any strategy adopted before...

stage K � 1 saddle point strategy

e f g h

At every stage, we have a static simultaneous game
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Backward induction in 2-player zero-sum setting

STEP K : Consider all the infinite subgames rooted in xK :
(Notice the abuse of notation: P1 node / state)

xK+1 = f(xK , uK , vK )

with outcome
gK (xK , uK , vK )

Determine �⇤
K ,�

⇤
K (functions of xK ) such that

gK (xK , �
⇤
K (xK ),�K (xK ))  gK (xK , �

⇤
K (xK ),�

⇤
K (xK ))  gK (xK , �K (xK ),�

⇤
K (xK ))
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Backward induction in 2-player zero-sum setting continued

Value function VK (xK ): value of the subgame rooted in xK , that is

VK (xK ) = gK (xK , �
⇤
K (xK ),�

⇤
K (xK ))

STEP K � 1: Consider all the infinite subgames rooted in xK�1

xK = f(xK�1, uK�1, vK�1)

with outcome
KX

k=K�1
gk(xk , uk , vk)

which we rewrite as
gK�1(xK�1, uK�1, vK�1) + VK (xK )

and therefore

gK�1(xK�1, uK�1, vK�1) + VK (f(xK�1, uK�1, vK�1))
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Backward induction

gK�1(xK�1, uK�1, vK�1) + VK (f(xK�1, uK�1, vK�1))

Determine �⇤
K�1,�

⇤
K�1 (functions of xK�1) that are saddle-points for

gK�1(xK�1, �K�1(xK�1),�K�1(xK�1)) + VK (f(xK�1, �K�1(xK�1),�K�1(xK�1)))

and so on, backward until stage 1.
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Dynamic games with N players, Nash equilibrium

We can generalize what we saw for two players in last lecture to N players
Dynamics xk+1 = f(xk , u

1
k , . . . , u

N

k ), xk 2 X

Player i ’s input set: U
i—can be time and state dependent, namely: U

i

k(x)

Player i ’s cost function:
P

K

k=1 g
i

k(xk , u
1
k , . . . , u

N

k )

State-feedback policy: ⇡i

k : X ! U
i , ⇡i

k(xk) = u
i

k

Open-loop policy: ⇡i

k : X ! U
i , ⇡i

k(x1) = u
i

k

Finding subgame perfect equilibrium by backward induction:
Set V

i

K+1(x) = 0, i 2 {1, 2, . . . ,N}. For k = K ,K � 1, . . . , 1,
find a Nash equilibrium policy at stage k: {⇡⇤,i

k
(x)}N

i=1

compute V
i

k(x) corresponding to the above polices, i 2 {1, 2, . . . ,N}
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An important extension: infinite horizon
Let us present it for simplicity in notation in single-player setting
player’s cost: limK!1

P
K

k=1 g(xk , uk)
ensure convergence of the sum, one approach is geometrically discounting costs

infinite horizon discounted cost
1X

k=1
↵k

g(xk , uk)

I � 2 [0, 1) and 9M > 0 such that |g(x, u)|  M for all x 2 X , u 2 U

=)
P1

k=1 ↵
kg(xk , uk) < 1

Bellman equation

V
⇤(x) = min

u2U

{g(x, u) + ↵V
⇤(f(x, u))}, 8x 2 X

Optimal stationary policy

⇡⇤(x) = argmin
u2U

g(x, u) + ↵V
⇤(f(x, u)), 8x 2 X
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Computation of subgame perfect equilibrium policies

Dynamic game (2-player zero-sum)
There exists a state that evolves at each stage

xk+1 = f(xk , uk , vk).

The outcome of the game can be expressed as
KX

k=1
gk(xk , uk , vk).

Finding the NE strategy for a dynamic game corresponds to solving an
optimization problem for every stage.
These problems are in general di�cult to solve.

One special case:
Linear state update f

Quadratic cost function g.
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One-player LQR

Consider the one-player case first.

Update equation

xk+1 = Axk + Buk , x 2 Rn, u 2 Rm

Cost function
K�1X

k=0

⇣
x

T

k Qxk + u
T

k Ruk

⌘
+ x

T

K SxK ,

R,Q are symmetric and R � 0, Q ⌫ 0
Value function (minimum cost to go, starting from x at time k)

Vk(x) = min
uk ,...uK�1

K�1X

s=k

⇣
x

T

s Qxs + u
T

s Rus

⌘
+ x

T

K SxK

V0(x0) is the value of the game.
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One-player LQR

Key ideas in the derivation of the NE feedback control law.
1 VK (x) = x

T
Qf x (quadratic function)

2 We will show that Vk(x) is also quadratic: Vk(x) = x
T
Pkx

3 Pk can be found recursively, working backward from K

4 The NE uk is a function of Pk and can be found easily because Pk is positive
definite.

We proceed by induction at stage k, where the value function is

Vk(x) = min
u

x
T
Qx + u

T
Ru + Vk+1(Ax + Bu)

13 / 30
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Induction

We proceed by induction, assuming that Vk+1(x) = x
T
Pk+1x. Then Vk(x) becomes

Vk(x) = x
T
Qx +min

u
u

T
Ru + (Ax + Bu)T

Pk+1(Ax + Bu) =

x
T
Qx +min

u
u

T
Ru + x

T
A

T
Pk+1Ax + 2u

T
B

T
Pk+1Ax + u

T
B

T
Pk+1Bu

= x
T
Qx +min

u
u

T (R + B
T
Pk+1B)u + x

T
A

T
Pk+1Ax + 2u

T
B

T
Pk+1Ax

To find the minimizer, we notice that R + B
T
Pk+1B � 0. Hence, this is a strongly

convex objective in u 2 Rm and by setting the gradient with respect to u to zero, we
can find the optimizer.

(R + B
T
Pk+1B)u + B

T
Pk+1Ax = 0

which gives the optimal feedback control

u
⇤ = �(R + B

T
Pk+1B)�1

B
T
Pk+1Ax

14 / 30
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Induction

Now we need to check that Vk(x) is also quadratic in x, i.e. Vk(x) = x
T
Pkx, and to

find how to compute Pk .
We plug the minimizer u

⇤ into Vk(x), and obtain the expression

Vk(x) = x
T
Qx + x

T
APk+1B(R + B

T
Pk+1B)�1(R + B

T
Pk+1B)·

· (R + B
T
Pk+1B)�1

B
T
Pk+1Ax + x

T
A

T
Pk+1Ax

� 2x
T
APk+1B(R + B

T
Pk+1B)�1

B
T
Pk+1Ax.

Just collecting the di�erent terms we get Vk(x) = x
T
Pkx where Pk is defined as

Pk = Q + A
T
Pk+1A � A

T
Pk+1B(R + B

T
Pk+1B)�1

B
T
Pk+1A

which completes the proof.
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One-player LQR

Optimal feedback policy is linear:

Value function Vk(x) = x
T
Pkx, Pk ⌫ 0

Subgame-perfect NE input is given by the linear state feedback

uk = �kxk

where for all k = 0, . . . ,K � 1 we define

�k = �(R + B
T
Pk+1B)�1

B
T
Pk+1A

For k = K , . . . , 1,

Pk�1 = Q + A
T
PkA � A

T
PkB(R + B

T
PkB)�1

B
T
PkA

starting from PK = S.
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Comments on one-player LQR

Symmetry and positive semi-definitess of Pk

Also this can be verified by induction.

K ! 1
If P0 converges to some P̄ when K ! +1, then P̄ can be evaluated via a discrete

Algebraic Riccati Equation:

P̄ = Q + A
T
P̄A � A

T
P̄B(R + B

T
P̄B)�1

B
T
P̄A

Exercise
How quickly does Pk converge to P̄ in a simple example,
and what kind of performance is given by P̄
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Comments on one-player LQR

Time-varying A, B, Q, R

The entire derivation (for finite horizons) works also in the case of time-varying
system parameters (for example, linearization of a non-linear system along the
optimal trajectory).

Alternative approach in finite horizon
If there are state and input constraints, the Riccati equation above will not hold.
We can use numerical computation approaches to solve the following

min
u0,...,uK�1

K�1X

k=0

⇣
x

T

k Qxk + u
T

k Ruk

⌘
+ x

T

K SxK

subject to xk+1 = Axk + Buk for k = 0, . . . ,K � 1
xk 2 Xk

uk 2 Uk
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Open-loop NE strategy

By solving the optimization in one shot (no DP), we get

u0, u1, . . . , uK�1 2 Rm

instead of a state feedback

u0(x), u1(x), . . . uK�1(x)

same action for all Player-1 nodes

This is an open-loop (= non-subgame-perfect) NE strategy!
What to do if we get to a node of the tree which does not belong to the NE
trajectory?
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Receding horizon

Receding horizon
Re-calculate a NE strategy from the new starting point (i.e., for the subtree rooted
in the current node).

For example: Model Predictive Control (MPC)

new game rooted in the current node

Computationally not as e�cient as explicit backward induction

Optimization has to be solved in real time

Still better than solving the entire tree
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Two-player LQR

Two controllers, with their own objective.

Climate control
Player 1 goal: low humidity (byproduct: high temperature)
Player 2 goal: low temperature

Multi-robot control
Both players want to create a formation that achieves optimal coverage of an area.

Platoon of trucks
Fuel saving + safety objectives for all trucks.
Competitive (di�erent companies) or collaborative (1-player LQR)
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Two-player LQR

State update equation for k = 0, . . . ,K � 1

xk+1 = Axk + B1uk + B2vk

Non-zero sum game setup

J1(u1, . . . , uK�1, v1, . . . , vK�1) =
K�1X

k=0

⇣
x

T

k Q1xk + u
T

k R1uk

⌘
+ x

T

K S1xK

J2(u1, . . . , uK�1, v1, . . . , vK�1) =
K�1X

k=0

⇣
x

T

k Q2xk + v
T

k R2vk

⌘
+ x

T

K S2xK

We try to apply backward induction to find a sub-game perfect NE.
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Two-player LQR

Let us define the value of the game at state x in stage k as

V1k(x) = min
uk ,...,uK�1

K�1X

s=k

⇣
x

T

s Q1xs + u
T

s R1us

⌘
+ x

T

K S1xK

V2k(x) = min
uk ,...,uK�1

K�1X

s=k

⇣
x

T

s Q2xs + v
T

s R2vs

⌘
+ x

T

K S2xK

STAGE K : For k = K (last stage) we have the quadratic forms

V1K (x) = x
T
S1x

V2K (x) = x
T
S2x
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Two-player LQR

As before, we conjecture that the value function is quadratic for all k.

V1k(x) = x
T
P1kx

V2k(x) = x
T
P2kx

If this is true, then it is enough to find the Nash equilibrium of the static game at a
generic stage k, and iterate backwards.

Stage k game: two coupled problems

J1 = x
T

k Q1xk + u
T

k R1uk + V1,k+1(xk+1)

= x
T

k Q1xk + u
T

k R1uk + V1,k+1(Axk + B1uk + B2vk)

J2 = x
T

k Q2xk + v
T

k R2vk + V2,k+1(xk+1)

= x
T

k Q2xk + v
T

k R2vk + V2,k+1(Axk + B1uk + B2vk)
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Two-player LQR

J1 = x
T

k Q1xk + u
T

k R1uk + V1,k+1(Axk + B1uk + B2vk)

J2 = x
T

k Q2xk + v
T

k R2vk + V2,k+1(Axk + B1uk + B2vk)

For each player, we construct the best response strategy.

Best response strategies

ûk(vk) = �
⇣

R1 + B
T

1 P1,k+1B1

⌘�1
B

T

1 P1,k+1 (Axk + B2vk)

v̂k(uk) = �
⇣

R2 + B
T

2 P2,k+1B2

⌘�1
B

T

2 P2,k+1 (Axk + B1uk)
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One-stage Nash equilibrium

Given the two best responses, the NE strategy (u⇤
k , v

⇤
k ) satisfies

ûk(v
⇤
k ) = u

⇤
k

v̂k(u
⇤
k ) = v

⇤
k

that is

u
⇤
k = �

⇣
R1 + B

T

1 P1,k+1B1

⌘�1
B

T

1 P1,k+1 (Axk + B2v
⇤
k )

v
⇤
k = �

⇣
R2 + B

T

2 P2,k+1B2

⌘�1
B

T

2 P2,k+1 (Axk + B1u
⇤
k )

NE feedback
The NE strategy is a linear feedback of the state xk

u
⇤
k = H1kxk , v

⇤
k = H2kxk

that satisfies the best-response coupled conditions above.
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Value of the single-stage game

Given the NE strategy
u
⇤
k = H1kxk , v

⇤
k = H2kxk .

we have the following quadratic value of the single-stage game.

kth stage subgame value

V1k = x
T

k P1kxk , V2k = x
T

k P2kxk

where

P1k = Q1 + H
T

1kR1H1k+

+ (A + B1H1k + B2H2k)
T
P1,k+1(A + B1H1k + B2H2k)

P2k = Q2 + H
T

2kR2H2k+

+ (A + B1H1k + B2H2k)
T
P2,k+1(A + B1H1k + B2H2k)
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From single stage to multi stage

The value function is quadratic: V1k = x
T

k P1kxk , V2k = x
T

k P2kxk

I we can use iterate backward on the stages

Iterative computation via two coupled Riccati equations

I how are they coupled?

P1k = Q1 + H
T

1kR1H1k+

+ (A + B1H1k + B2H2k)
T
P1,k+1(A + B1H1k + B2H2k)

P2k = Q2 + H
T

2kR2H2k+

+ (A + B1H1k + B2H2k)
T
P2,k+1(A + B1H1k + B2H2k)

P1K = S1

P2K = S2

The NE control u
⇤
k , v

⇤
k can be computed from Pik

I System of linear equations (or explicit form)
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Summary and further reading

We can find subgame perfect equilibria of dynamic feedback games using
backward induction

Computation:
I at each stage, need to find a Nash equilibrium for every state x 2 X : generally

di�cult
I tractable for certain classes of games, such as linear quadratic games

in linear quadratic games, there exists a linear state-feedback policy Nash
equilibrium

Reading: Chapter 17 of Hespanha
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