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Course topics

Static games

Zero-sum games

Potential games

Extensive form games

Randomized strategies in extensive form games
@A Dynamic games, dynamic programming for games
Dynamic games, linear quadratic games

B Convex games, Nash equilibria characterization

B Convex games, Nash equilibria computation
Auctions

=

Bayesian games

=

Learning in games
Final project presentations

=

=
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Admin matter

= Timeline: project update: April 16, 13:15-14:00, 10%
= Template for presentation was posted on last week’s Moodle
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Review - loop model

Dynamic game (first zero-sum setting for simplicity)
There exists a state that evolves at each stage

Xkt1 = L(Xk,uk,Vk)

The outcome of the game can be expressed as

K

ng(xkyukyvk)-

k=1

= player 1 minimizer, player 2 maximizer

Last time, we motivated and defined subgame perfect equilibrium.
Today’s goals:

= more intuition into subgame perfect equilibrium
= computation for specific class of dynamic games: linear quadratic games
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Backward induction to compute subgame perfect equilibria

Subgame-perfect Nash Equilibrium

A strategy is a subgame perfect equilibrium if it represents a NE of every
subgame of the original game.

stages 1,..., K =2
for any strategy adopted before...

stage K — 1 saddle point strategy

efeh stage K saddle point strategy

At every stage, we have a static simultaneous game

S‘,’D\Q& A ot Fme K

2 lr\'e So (X. u'\l\
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Backward induction in 2-player zero-sum setting

STEP K: Consider all the infinite subgames rooted in xx:
(Notice the abuse of notation: P1 node / state)

Xk+1 = F(Xk, Uk, Vi)

with outcome
9k (X, Uk, V)

Determine ~g, ox (functions of xx) such that

9k (X, k(XK ), ok (X)) < Gk (X, Tk (XK ), o (X)) < G (X, Y (XK ), o (X))
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Backward induction in 2-player zero-sum setting continued

Value function Vi (xx): value of the subgame rooted in x, that is
Vik(xk) = gk (Xi, 7k (XK ), o (X))
STEP K — 1: Consider all the infinite subgames rooted in xx _+
Xk = F(XKk—1,UKk—1,Vk—1)

k-1
with outcome

K
Z (X, Uk, Vi)
—K—

k 1

which we rewrite as
Ik—1(Xk—1,Uk—1, Vk—1) + Vk(Xx)

and therefore

Ik —1(Xk—1, Uk—1, Vk—1) + Vi (F(Xk—1, Uk —1, Vk—1))
K~7
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Backward induction

U ( xg-\/um-(/\jlcﬁ\B
(-t

/
/__’\/_\'

Ik —1(Xk—1, Uk—1, Vk—1) + Vi (F(Xk—1, Uk -1, Vk—1))

Determine ~x_4, ox_¢ (functions of xx_+) that are saddle-points for
L 4

» x
Ik —1(Xk—1, “/K*—1(XK—1)7 ok—1(Xk—1)) + Vi (F(Xk =1, 7k —1(Xk—1), ok —1 (XK =1)))

and so on, backward until stage 1.

e~ [c~t
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Dynamic games with N players, Nash equilibrium

We can generalize what we saw for two players in last lecture to N players

® Dynamics X1 :E(xk,u,‘(, LU, ke X

m Player i’s input set: U'—can be time and state dependent, namely: U;(x)

= Player i’s cost function: 3K, gk (Xi, U}, ..., ul) ot =K

m State-feedback policy: 7, : X — U, m(xx) = U} Lone] Lﬁo,(,k,,w

= Open-loop policy: 7 : X — U', mh(x1) = uj, < ﬁ ol il NgN
X, ‘*/u/ W
K )}:l
Finding subgame perfect equilibrium by backward induction:
Set Vi, 1(x)=0,ie{1,2,...,N}. Fork=K,K—-1,...,1,
= find a Nash equilibrium policy at stage k: {7r;f”'(x)}§i1
= compute V/(x) corresponding to the above polices, i € {1,2,...,N}
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An important extension: infinite horizon

Let us present it for simplicity in notation in single-player setting
players cost: limx e Sk, g(Xk, Uk)

ensure convergence of the sum, one approach is geometrically discounting costs

m infinite horizon discounted cost

> g(x, u)
k=1

’6(6 [0,1) and 3M > 0 such that |g(x, u)| <Mfora||x€X uel
= R%y afg(xk, Ux) < oo <z ? << - M
IcxQ I"O(

= Bellman equation

V*(x) = Lnei[r){g(x,u) + aV*(f(x,u))}, ¥x € X

m Optimal stationary policy

7 (x) = arg miDg(X,u) + aV*(f(x,u)), ¥x € X
ue
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Computation of subgame perfect equilibrium policies

Dynamic game (2-player zero-sum)
There exists a state that evolves at each stage

Xk1 = f(Xk7 Uk, Vk).

The outcome of the game can be expressed as

K

ZQk(Xk,Uk,Vk)-

k=1

Finding the NE strategy for a dynamic game corresponds to solving an
optimization problem for every stage.
These problems are in general difficult to solve.

One special case:
m Linear state update f
= Quadratic cost function g.
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One-player LQR

Consider the one-player case first.
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One-player LQR

Consider the one-player case first.

Update equation
Xkp1 = Axk + Buk, x e R",u € R™
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One-player LQR

Consider the one-player case first.

Update equation
Xkp1 = Axk + Buk, x e R",u € R™

Cost function
K—1

> (ka Qxx + uf Ruk) + Xk Sxk,

k=0
R,Q are symmetricand R = 0,Q > 0
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One-player LQR

Consider the one-player case first.

Update equation
Xkt = Axx + Bug, x e R",u e R™
Cost function s
> (ka Qxx + uf Ruk) + XgSxx,
k=0
R,Q are symmetricand R = 0,Q > 0
Value function (minimum cost to go, starting from x at time k)

K—1
Ve(x) = min > (X_ZQXS + uSTF?us) + X} Sxx
N

Vo (Xo) is the value of the game.
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One-player LQR

—
I
% % X
Key ideas in the defivation of the NE feedback control law.
Vi (x) = x" & x (quadratic function)
We will show that Vi (x) is also quadratic: Vi(x) = x” Pex
Py can be found recursively, working backward from K

The(NE|ux is a function of P, and can be found easily because P is positive
defini

We proceged by induction at stage k, where the value function is

Vi(x) = minx"Qx + u” Ru + Vi1 (Ax + Bu)
u

nd e (s e P
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Induction  re cec Il

- T
C u
We proceed by induction, assuming that Vi1(x) = x"P1x. Then Vi (x) becomes
Vi(x) = x"Qx + minu" Ru + (Ax + Bu) Py, 1(Ax + Bu) =
x"Qx + minu"Ru + x" AT Pi1Ax + 2u" BT Py 1Ax + u' BT P 1Bu

=x"Qx 4+ minu" (R+ B Py 1B)u+ x" ATPy,1Ax + 2u" BT P 1Ax
u

To find the minimizer, we notice that R + BTPk+1B > Q.
convex objective in u € R™ and by setting the gradient w
can find the optimizer.

ence, this is a strongly
respect to u to zero, we

{oogl
(R+ BT Pe1B)u + B Pes1Ax = 0 lefon:
which gives the optimal feedback control o=>
—(R+B"Pe1B) "B Pyy1Ax 2l espn
velng
sh c+b3 >05

o :r\vc_rHD[
$>'gu'\tl‘$/\ [ ?Lty‘g}) 14/30



Induction

Now we need to check that V,(x) is also quadratic in x, i.e. Vi(x) = x" Pxx, and to
find how to compute Py.
We plug the minimizer u* into Vi (x), and obtain the expression

Vi(x) = x" Qx + x" APx1B(R + B Py .1B) "' (R + B" Py .1 B)-
(R+ B"Pi1B) 'B" Py 1Ax 4+ xT AT Py, 1 Ax
— 2x" AP 1B(R + B Py ,1B) " 'B" P41 Ax.

Just collecting the different terms we get Vi (x) = xTP.x where Py is defined as
Pi=Q+A"P 1A — AP yB(R+ B Py 1B) 'BTPy 1A

which completes the proof.
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One-player LQR

Optimal feedback policy is linear:
® Value function Vi (x) = x"Pyx, Py = 0
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One-player LQR

Optimal feedback policy is linear:
® Value function Vi (x) = x"Pyx, Py = 0
m Subgame-perfect NE input is given by the linear state feedback

Uk = TiX
where forallk = 0,...,K — 1 we define

Mk = —(R+B"Px1B) 'B P 1A

16/30



One-player LQR

Optimal feedback policy is linear:
® Value function Vi (x) = x"Pyx, Py = 0
m Subgame-perfect NE input is given by the linear state feedback

Uk = TiX
where forallk = 0,...,K — 1 we define

Mk = —(R+B"Px1B) 'B P 1A

m Fork=K,...,1,
Pi_1=Q+A"PA—A"PB(R+B"PB)"'B"PA

starting from Px = S.
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Comments on one-player LQR

Symmetry and positive semi-definitess of Py
Also this can be verified by induction.
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Comments on one-player LQR

Symmetry and positive semi-definitess of Py
Also this can be verified by induction.

K —

If Py converges to some P when K — oo, then P can be evaluated via a discrete
Algebraic Riccati Equation:

P=Q+A"PA—A"PB(R+B"PB)"'B"PA
Exercise

How quickly does Pk converge to P in a simple example,
and what kind of performance is given by P
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Comments on one-player LQR

Time-varying A, B, Q, R

The entire derivation (for finite horizons) works also in the case of time-varying
system parameters (for example, linearization of a non-linear system along the
optimal trajectory).
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Comments on one-player LQR

Time-varying A, B, Q, R

The entire derivation (for finite horizons) works also in the case of time-varying
system parameters (for example, linearization of a non-linear system along the
optimal trajectory).

Alternative approach in finite horizon

If there are state and input constraints, the Riccati equation above will not hold.
We can use numerical computation approaches to solve the following

K—1
min Z (kaka e u,fRuk) + X Sxx
Ug,. UK 1 o
subjectto Xk 1 =Axxk +Bux fork=0,...,K—1
Xk € X

Uk € Uk
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Open-loop NE strategy

By solving the optimization in one shot (no DP), we get

UO,U1,...,UK_1€Rm W‘M
instead of a state feedback Z LD ({
Uo(x),ur(x), ... uk—1(x) approcC
o(o 1 ' 1 ) PI’J l’)

e ‘P@ L,r\QJ
O]') Io W\u_g Fol«
same action for all Player-1 nodes \—j

« ic £
M

e IR

c
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Open-loop NE strategy

By solving the optimization in one shot (no DP), we get
Uo, Ui, ... ,Uk—1 € R"
instead of a state feedback

Uo(X),uq(X), ... uxk—1(x)

same action for all Player-1 nodes

This is an open-loop (= non-subgame-perfect) NE strategy!
What to do if we get to a node of the tree which does not belong to the NE
trajectory?
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Receding horizon

Receding horizon

Re-calculate a NE strategy from the new starting point (i.e., for the subtree rooted
in the current node).

For example: Model Predictive Control (MPC)

new game rooted in the current node

= Computationally not as efficient as explicit backward induction
m Optimization has to be solved in real time
m Still better than solving the entire tree
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Two-player LQR

Two controllers, with their own objective.

Climate control

Player 1 goal: low humidity (byproduct: high temperature)
Player 2 goal: low temperature

Multi-robot control
Both players want to create a formation that achieves optimal coverage of an area.

Platoon of trucks

Fuel saving + safety objectives for all trucks.
Competitive (different companies) or collaborative (1-player LQR)
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Two-player LQR

State update equation fork =0,...,K — 1

Xk+1 = AXk + Bruk + Bovi

Non-zero sum game setup

J1(U1,...,UK_1,V1,..

Ja(Uy, ... uk—1,v1q,..

K—1

(X[O1xk + Ui Ry Uk) + Xk S1xk

o

X x

(XkT Qoxk + Vi Ro Vk) + X Saxx
k=0

We try to apply backward induction to find a sub-game perfect NE.
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Two-player LQR

cost ho- Z]o ,Pz/ eccch Plu/aﬁ-fv
Let us define the value of the game at state x in stage k as

K—1

Plasge” 1 Vik(x) = min (XSTQ1XS + uSTR1us) + X Sixk
/g stk
K—1

Vok(x) = min Z (XSTOQXS + VSTHZVS) + XFSoxk

Ugs- sk 1
/ - -
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Two-player LQR

Let us define the value of the game at state x in stage k as
K—1

Vik(x) = min Z (XSTQ1X5 + uSTR1us) + XESixk

ko5 UK —1

Var(x) = min Z (XSTOQXS + VSTHZVS) + XFSoxk

kseoes Uk —1
S=

STAGE K: For k = K (last stage) we have the quadratic forms
Vik(x) = x" Six

Vok(x) = XT82x
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Two-player LQR

As before, we conjecture that the value function is quadratic for all k.
Vik(x) = xT Pix
ng(X) = XTPQkX

If this is true, then it is enough to find the Nash equilibrium of the static game at a
generic stage k, and iterate backwards.
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Two-player LQR

As before, we conjecture that the value function is quadratic for all k.
Vik(x) = xT Pix
ng(X) = XTPQkX

If this is true, then it is enough to find the Nash equilibrium of the static game at a
generic stage k, and iterate backwards.

Stage k game: two coupled problems
Ji = X{ Qixc + Uk Ry + Vi et (Xie1)
= X} QsXx + U} RiUx + Vi ky1(Axk + Biuy + Bavi)
J2 = X QoXic + Vi RaVi + Vo st (Xis1)
(

= X¢ Qoxi + Vi RaVk + Va1 (AXk + Biuy + Bavi)

24/30



Two-player LQR

0
(1 85100 P (4
i

Ji = X{ Quxk + UL Rtk + Vi k1 (Axk + Biuk + Bavi)
Jo = X4 Qoxk + Vi RaVk + Va ki1 (Axk + By + Bavi)

For each player, we construct the best response strategy.

Best response strategies

1
Ok (vk) = — (5’1 + B1TP1,k+1B1) BI P ki1 (Axx + Bovi)

»
Uk(uk) = — Fl'z +BlP, k+1BZ) Bl Py ki1 (Axk + Biug)

)
¥
"\\\__:¥37

|
= U c
DU\ C ic

EJZ_\D Vi c?

1)
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One-stage Nash equilibrium

Given the two best responses, the NE strategy (uj, vi) satisfies

Uk(vi) = Uk
Ue(uk) = v

that is
* T -1 T *
L]k = — (I:?1 —+ £31 f317k.+1 £31 ) £31 f31,k-k1 (/4)(k + £32 Vk )

—1
Vi = = (Re+BIPaki1Bz)  BIPass1 (Axic+ Biup)
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One-stage Nash equilibrium

Given the two best responses, the NE strategy (uj, vi) satisfies

Uk(vi) = Uk
V(ug) = vk

that is
* T =1 T *
U = — (H1 -+ B1 P17k+1B1) B1 P1,k+1 (AXk + BZVk)

—1
Vg = — (Hz + Bszz,k+1Bz) B3 P2 st (Axi + Biui)

NE feedback
The NE strategy is a linear feedback of the state xi

Ui = HixXx, Vi = HokXk

that satisfies the best-response coupled conditions above.
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Value of the single-stage game

Given the NE strategy
ug = Higxx, Vi = HaXk.

we have the following quadratic value of the single-stage game.

kth stage subgame value
V1k :X;Z—P”(Xk, V2k :XIZ—P2ka
where
Pix = Qi + HiRiH+
+ (A + BiHik + BoHak) Py 11 (A + BiHik + BoHa)
Pk = Q2 + HszRszk—i—
+ (A+ BiHuk + BoHak)" Po 1 (A + BiHik + BoHax)
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From single stage to multi stage

® The value function is quadratic: Vix = X PixX, Vax = X PaxXk
> we can use iterate backward on the stages
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From single stage to multi stage

® The value function is quadratic: Vix = X PixX, Vax = X PaxXk
> we can use iterate backward on the stages

m [terative computation via two coupled Riccati equations
> how are they coupled?

Pik=Q1 + H1T;<R1H1k+

+ (A + ByHik + BaHak) Py o1 (A + ByHik + BaHay)
Pak = Q2 + HaRaHak+

+ (A + BiHik + BoHax) P2 e 1(A + BiHik + BoHax)
Pik = S
Pax = Sz
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From single stage to multi stage

® The value function is quadratic: Vix = X PixX, Vax = X PaxXk
> we can use iterate backward on the stages

m [terative computation via two coupled Riccati equations
> how are they coupled?

Pik=Q1 + H1T;<R1H1k+

+ (A + ByHik + BaHak) Py o1 (A + ByHik + BaHay)
Pak = Q2 + HaRaHak+

+ (A + BiHik + BoHax) P2 e 1(A + BiHik + BoHax)
Pik = S
Pax = Sz

= The NE control ug, vi can be computed from Py
> System of linear equations (or explicit form)
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Summary and further reading

We can find subgame perfect equilibria of dynamic feedback games using
backward induction

Computation:

> at each stage, need to find a Nash equilibrium for every state x € X: generally
difficult
» tractable for certain classes of games, such as linear quadratic games

in linear quadratic games, there exists a linear state-feedback policy Nash
equilibrium

Reading: Chapter 17 of Hespanha
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